pull down to refresh
247 sats \ 4 replies \ @k00b OP 1 Mar \ parent \ on: SN release: million sat madness, reward leaderboard, top stackers by value, more meta
secret formula proportions |
---|
0.3312903760145768 |
0.09938711280437303 |
0.06625807520291535 |
0.04969355640218651 |
0.033129037601457675 |
0.02981613384131191 |
0.026503230081166142 |
0.023190326321020374 |
0.019877422560874606 |
0.016564518800728838 |
0.014908066920655955 |
0.013251615040583071 |
0.012920324664568494 |
0.012589034288553918 |
0.01225774391253934 |
0.011926453536524764 |
0.011595163160510187 |
0.01126387278449561 |
0.010932582408481033 |
0.010601292032466457 |
0.01027000165645188 |
0.009938711280437303 |
0.009607420904422726 |
0.00927613052840815 |
0.008944840152393572 |
0.008613549776378996 |
0.008282259400364419 |
0.007950969024349842 |
0.007619678648335266 |
0.007288388272320689 |
0.006957097896306112 |
0.006625807520291536 |
0.006294517144276959 |
0.005963226768262382 |
0.005631936392247805 |
0.005300646016233228 |
0.0049693556402186515 |
0.004638065264204075 |
0.004306774888189498 |
0.003975484512174921 |
0.0036441941361603446 |
0.003312903760145768 |
0.0031472585721384794 |
0.002981613384131191 |
0.0028159681961239026 |
0.002650323008116614 |
0.0024846778201093257 |
0.0023190326321020373 |
0.002153387444094749 |
0.0019877422560874605 |
0.0018220970680801723 |
0.001656451880072884 |
0.0014908066920655955 |
0.001325161504058307 |
0.0011595163160510187 |
0.0009938711280437303 |
0.000828225940036442 |
0.0006625807520291535 |
0.0004969355640218651 |
0.00033129037601457677 |
0.00033129037601457677 |
0.00033129037601457677 |
0.00033129037601457677 |
0.00033129037601457677 |
What are the odds? The total comes out to exactly 100%! :)
reply
ChatGPT got it!
"It seems like the values are decreasing and getting closer to zero. Additionally, the values are following a certain pattern where each subsequent value is approximately one-third of the previous value.
This suggests an exponential decay pattern. Specifically, it seems the values are being generated by the function:
f(n)=1/(3ˆn)
where n represents the position in the sequence (starting from 0)."
reply