pull down to refresh

Nothing too complicated to get started again.
Solve this infinite product:
\prod_{n=2}^{\infty} \frac{n^3-1}{n^3+1}=\ ?
Previous iteration: #770290
The answer is 2/3
The trick is to know the simplification:
\frac{T^3-1}{T^3+1} = \left( \frac{T-1}{T+1} \right) \left( \frac{T^2+T+1}{T^2-T+1} \right)
This lets us prove by induction that:
\prod_{n=2}^{T} \frac{n^3-1}{n^3+1} = \frac{2}{3} \left( \frac{T^2+T+1}{T^2+T} \right)
which becomes 2/3 in the limit as T \rightarrow \infty
To prove it, we can verify the equation easily for T=2.
Then:
\prod_{n=2}^{T} \frac{n^3-1}{n^3+1} = \left( \prod_{n=2}^{T-1} \frac{n^3-1}{n^3+1} \right) \left( \frac{T^3-1}{T^3+1} \right)
= \frac{2}{3} \left( \frac{(T-1)^2 + (T-1) + 1}{(T-1)^2 + (T-1)} \right) \left( \frac{T-1}{T+1} \right) \left( \frac{T^2+T+1}{T^2-T+1} \right)
= \frac{2}{3} \left( \frac{T^2 - T + 1}{T^2-T} \right) \left( \frac{T-1}{T+1} \right) \left( \frac{T^2+T+1}{T^2-T+1} \right)
= \frac{2}{3} \left( \frac{T^2+T+1}{T^2+T} \right)
Q.E.D.
reply