pull down to refresh
x
\sum_{k=1}^{\infty} \frac{1}{\left\lfloor \sum_{n=1}^{k} \frac{ k(-1)^{t+1}}{n^k} \right\rfloor}
(-1)^{k+1} \frac{1}{\left\lfloor k \sum_{n=1}^{k} \frac{1}{n^k} \right\rfloor}
k
\sum_{k=1}^{\infty} \frac{1}{\left\lfloor \sum_{n=1}^{k} \frac{ k(-1)^{t+1}}{n^k} \right\rfloor} = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k} = \ln 2
x
never appears continuously in the integral (only in the floor function), the integral itself is equal to the following sum:k
.