pull down to refresh
\frac{\Delta t_M}{\Delta t_E} = \sqrt{\frac{1 - \frac{2GM_M}{r_M c^2}}{1 - \frac{2GM_E}{r_E c^2}}}
M_E, r_E
M_M, r_M
c
\Delta t
\Delta t'
from math import sqrt G = 6.674e-11 c = 3e8 M_E = 5.972e24 r_E = 6_371e3 M_M = 7.342e22 r_M = 1_737e3 factor_E = sqrt(1 - (2 * G * M_E) / (r_E * c**2)) factor_M = sqrt(1 - (2 * G * M_M) / (r_M * c**2)) time_dilation_ratio = factor_M / factor_E day_in_seconds = 24 * 60 * 60 time_difference = (1 - time_dilation_ratio) * day_in_seconds print(time_dilation_ratio, time_difference)
M_E, r_E
: mass and radius of EarthM_M, r_M
: mass and radius of the Moonc
: speed of light\Delta t
: proper time interval far from the massive body\Delta t'
: time interval closer to the massive body