So: What did they find? Anthropic looked at 10 different behaviors in Claude. One involved the use of different languages. Does Claude have a part that speaks French and another part that speaks Chinese, and so on?
The team found that Claude used components independent of any language to answer a question or solve a problem and then picked a specific language when it replied. Ask it “What is the opposite of small?” in English, French, and Chinese and Claude will first use the language-neutral components related to “smallness” and “opposites” to come up with an answer. Only then will it pick a specific language in which to reply. This suggests that large language models can learn things in one language and apply them in other languages.
Anthropic also looked at how Claude solved simple math problems. The team found that the model seems to have developed its own internal strategies that are unlike those it will have seen in its training data. Ask Claude to add 36 and 59 and the model will go through a series of odd steps, including first adding a selection of approximate values (add 40ish and 60ish, add 57ish and 36ish). Towards the end of its process, it comes up with the value 92ish. Meanwhile, another sequence of steps focuses on the last digits, 6 and 9, and determines that the answer must end in a 5. Putting that together with 92ish gives the correct answer of 95.
And yet if you then ask Claude how it worked that out, it will say something like: “I added the ones (6+9=15), carried the 1, then added the 10s (3+5+1=9), resulting in 95.” In other words, it gives you a common approach found everywhere online rather than what it actually did. Yep! LLMs are weird. (And not to be trusted.)
So much hidden between those matrix multiplications...