The two circles
O
and O^\prime
with radii of 1 are tangent with each other and with the horizontal line at the bottom. Circle O_1
is inscribed with a maximum possible radius inside O
, O^\prime
, and the horizontal line. O_2
, O_3
,... are successively inscribed following the same rule maximizing their radius.Find the diameter of a circle
O_n
.Previous iteration: #720410 (quite a few different valid solutions were found for this one, congrats~~)
O_1
looking at the right triangle(1-r)^2 + 1^2 = (1+r)^2
O_1
is\frac{1}{2}
.O_2
giving\frac{1}{6}
andO_3
giving\frac{1}{12}
etc.O_n
O_3
though.O_2
(1 - \frac{1}{2} - r)^2 + 1 = 1 + 2*r + r^2
O_3
(1 - \frac{1}{2} - \frac{1}{6} - r)^2 + 1 = 1 + 2*r + r^2
(\frac{6}{6} - \frac{3}{6} - \frac{1}{6} - r)^2 + 1 = 1 + 2*r + r^2
(\frac{1}{3} - r)^2 + 1 = 1 + 2*r + r^2
\frac{1}{9} - \frac{2}{3}*r + r^2 + 1 = 1 + 2*r + r^2
\frac{1}{9} - \frac{2}{3}*r = 2*r
\frac{1}{9} = \frac{8}{3}*r
\frac{3}{9*8} = r
\frac{1}{24} = r
\frac{1}{12}
\frac{1}{2}, \frac{1}{6}, \frac{1}{12}, \frac{1}{20}, \frac{1}{30}, ...
r
to denote the different radii ofO_1
(as in the drawing) andO_2
(as in the right-hand side of the formula below)? And same comment for the subsequentO_3
equation?1/18
forO_3
.O_3
O
)r
, wherer
denotes the radius ofO_3
.O_n
).1
minus the sum of all diametersO_1
andO_2
minusr
ofO_3
.r
ofO_3
.