Simplify this expression:
\begin{split}
\left(\sqrt{\frac{(a^2 + 4a + 4) - (a + 2)^2}{\cos^2(x) + \sin^2(x)}} + \ln(e^a) - \int_{-a}^{a} x^3 \, dx - x \right) \times \\ \left(\sqrt{\frac{(b^2 + 4b + 4) - (b + 2)^2}{\cos^2(x) + \sin^2(x)}} + \ln(e^b) - \int_{-b}^{b} x^3 \, dx - x\right) \times \\ \left(\sqrt{\frac{(c^2 + 4c + 4) - (c + 2)^2}{\cos^2(x) + \sin^2(x)}} + \ln(e^c) - \int_{-c}^{c} x^3 \, dx - x\right) \times \\ ... \times \\ \left(\sqrt{\frac{(z^2 + 4z + 4) - (z + 2)^2}{\cos^2(x) + \sin^2(x)}} + \ln(e^z) - \int_{-z}^{z} x^3 \, dx - x\right)
\end{split}
(there are 26 factors in this product)
Previous iteration: #792583 (nearly unsolvable, by design)
(a+2)^2 = (a^2+4a+4)
.x^3
is an odd function and the intervals are symmetric around 0.ln(e^a) = a
etc.(x-x) = 0
, the end result must bequote reply
. This should give you the mathjax syntax. You can use that in any program that recognizestex
syntex.